FLT-PET/CT for the Prediction of Response to ANG-1005 Therapy in Patients with Brain Metastases from Breast Cancer

Laleh Amri-Kordestan, Esther M. Gonzalez, M. Liza Lindenberg, Karen Kurdiel, Peter Choyke, Nicholas Patronas, Robin Eisich, Nancy Lin, Sanjeeve Bala, Tito Jofo, Susan Bates
Medical Oncology Branch, National Cancer Institute, NIH, Bethesda, MD

Background
- 18F-FLT (3’ Fluoro 3’ deoxythymidine)-PET imaging is a novel imaging study and a tool for measuring in vivo tumor cell proliferation.
- FLT is an analog of thymidine. Retention of FLT by the cells reflects DNA synthesis.
- ANG1005 (formerly called GRN1005) is a peptide-drug conjugate being developed for targeted treatment of brain metastases (Cremophor-free formulation).
- It consists of 3 molecules of paclitaxel covalently linked to Angiopep-2 designed to cross the blood brain barrier via LDL receptor related peptide (LRP) transport system.
- ANG1005 therapy was administered intravenously at 550 mg/m^2 every 21 days progressing of intra-cranial disease or unacceptable toxicity. All patients underwent FLT PET/CT imaging before and after 1 cycle of therapy with ANG1005. For (18F) FLT-PET/CT scan: Volumes of Interest were drawn in target brain metastases: SUVmax (80% Threshold : average value of the maximum 20% pixels), SUVmax, % of Change pre-post therapy, % of change (using SUVmax), % of change (using T/Normal ratio). Patients underwent dynamic brain imaging over 30 min and then a static whole body PET scan at 1 hour post-injection. We calculated the % of change before and after therapy, considering significant response if the % of change was larger than 20%.

Study Objectives
- Primary Objective: Determine whether one cycle of therapy ANG1005 is associated with a significant change in FLT-PET uptake.
- Key Secondary Objectives:
 1. Determine whether change in the FLT-PET/CT uptake after 1 cycle of therapy with ANG1005 is associated with intracranial tumor response.
 2. Compare brain metastasis detection by standard contrast-enhanced MRI vs. FLT PET/CT vs. dynamic contrast MRI.

Study Design & Methods
- ANG1005 therapy was administered intravenously at 550 mg/m^2 every 21 days progressing of intra-cranial disease or unacceptable toxicity. All patients underwent FLT PET/CT imaging before and after 1 cycle of therapy with ANG1005. For (18F) FLT-PET/CT scan: Volumes of Interest were drawn in target brain metastases: SUVmax (80% Threshold : average value of the maximum 20% pixels), SUVmax, % of change pre-post therapy, % of change (using SUVmax), % of change (using T/Normal ratio). Patients underwent dynamic brain imaging over 30 min and then a static whole body PET scan at 1 hour post-injection. We calculated the % of change before and after therapy, considering significant response if the % of change was larger than 20%.

Results
- FLT PET/CT Baseline (09/06/2012)
 - SUVmax = 2.91

- PET/CT before 1 cycle of therapy with ANG1005.

- FLT PET/CT after 1 cycle of therapy with ANG1005.
 - SUVmax = 2.29

- FLT / Normal ratio change was significant (using T:Normal ratio).

- FLT PET/CT vs. dynamic contrast MRI imaging study and a tool for measuring in vivo tumor cell proliferation.
- FLT is an analog of thymidine. Retention of FLT by the cells reflects DNA synthesis.
- ANG1005 (formerly called GRN1005) is a peptide-drug conjugate being developed for targeted treatment of brain metastases (Cremophor-free formulation).
- It consists of 3 molecules of paclitaxel covalently linked to Angiopep-2 designed to cross the blood brain barrier via LDL receptor related peptide (LRP) transport system.
- ANG1005 therapy was administered intravenously at 550 mg/m^2 every 21 days progressing of intra-cranial disease or unacceptable toxicity. All patients underwent FLT PET/CT imaging before and after 1 cycle of therapy with ANG1005. For (18F) FLT-PET/CT scan: Volumes of Interest were drawn in target brain metastases: SUVmax (80% Threshold : average value of the maximum 20% pixels), SUVmax, % of Change pre-post therapy, % of change (using SUVmax), % of change (using T/Normal ratio). Patients underwent dynamic brain imaging over 30 min and then a static whole body PET scan at 1 hour post-injection. We calculated the % of change before and after therapy, considering significant response if the % of change was larger than 20%.

Study Objectives
- Primary Objective: Determine whether one cycle of therapy ANG1005 is associated with a significant change in FLT-PET uptake.
- Key Secondary Objectives:
 1. Determine whether change in the FLT-PET/CT uptake after 1 cycle of therapy with ANG1005 is associated with intracranial tumor response.
 2. Compare brain metastasis detection by standard contrast-enhanced MRI vs. FLT PET/CT vs. dynamic contrast MRI.

Study Design & Methods
- ANG1005 therapy was administered intravenously at 550 mg/m^2 every 21 days progressing of intra-cranial disease or unacceptable toxicity. All patients underwent FLT PET/CT imaging before and after 1 cycle of therapy with ANG1005. For (18F) FLT-PET/CT scan: Volumes of Interest were drawn in target brain metastases: SUVmax (80% Threshold : average value of the maximum 20% pixels), SUVmax, % of change pre-post therapy, % of change (using SUVmax), % of change (using T/Normal ratio). Patients underwent dynamic brain imaging over 30 min and then a static whole body PET scan at 1 hour post-injection. We calculated the % of change before and after therapy, considering significant response if the % of change was larger than 20%.

Results
- FLT PET/CT Baseline (09/06/2012)
 - SUVmax = 2.91

- PET/CT before 1 cycle of therapy with ANG1005.

- FLT PET/CT after 1 cycle of therapy with ANG1005.
 - SUVmax = 2.29

- FLT / Normal ratio change was significant (using T:Normal ratio).

- FLT PET/CT vs. dynamic contrast MRI imaging study and a tool for measuring in vivo tumor cell proliferation.
- FLT is an analog of thymidine. Retention of FLT by the cells reflects DNA synthesis.
- ANG1005 (formerly called GRN1005) is a peptide-drug conjugate being developed for targeted treatment of brain metastases (Cremophor-free formulation).
- It consists of 3 molecules of paclitaxel covalently linked to Angiopep-2 designed to cross the blood brain barrier via LDL receptor related peptide (LRP) transport system.
- ANG1005 therapy was administered intravenously at 550 mg/m^2 every 21 days progressing of intra-cranial disease or unacceptable toxicity. All patients underwent FLT PET/CT imaging before and after 1 cycle of therapy with ANG1005. For (18F) FLT-PET/CT scan: Volumes of Interest were drawn in target brain metastases: SUVmax (80% Threshold : average value of the maximum 20% pixels), SUVmax, % of Change pre-post therapy, % of change (using SUVmax), % of change (using T/Normal ratio). Patients underwent dynamic brain imaging over 30 min and then a static whole body PET scan at 1 hour post-injection. We calculated the % of change before and after therapy, considering significant response if the % of change was larger than 20%.

Study Objectives
- Primary Objective: Determine whether one cycle of therapy ANG1005 is associated with a significant change in FLT-PET uptake.
- Key Secondary Objectives:
 1. Determine whether change in the FLT-PET/CT uptake after 1 cycle of therapy with ANG1005 is associated with intracranial tumor response.
 2. Compare brain metastasis detection by standard contrast-enhanced MRI vs. FLT PET/CT vs. dynamic contrast MRI.

Study Design & Methods
- ANG1005 therapy was administered intravenously at 550 mg/m^2 every 21 days progressing of intra-cranial disease or unacceptable toxicity. All patients underwent FLT PET/CT imaging before and after 1 cycle of therapy with ANG1005. For (18F) FLT-PET/CT scan: Volumes of Interest were drawn in target brain metastases: SUVmax (80% Threshold : average value of the maximum 20% pixels), SUVmax, % of change pre-post therapy, % of change (using SUVmax), % of change (using T/Normal ratio). Patients underwent dynamic brain imaging over 30 min and then a static whole body PET scan at 1 hour post-injection. We calculated the % of change before and after therapy, considering significant response if the % of change was larger than 20%.

Results
- FLT PET/CT Baseline (09/06/2012)
 - SUVmax = 2.91

- PET/CT before 1 cycle of therapy with ANG1005.

- FLT PET/CT after 1 cycle of therapy with ANG1005.
 - SUVmax = 2.29

- FLT / Normal ratio change was significant (using T:Normal ratio).

- FLT PET/CT vs. dynamic contrast MRI imaging study and a tool for measuring in vivo tumor cell proliferation.
- FLT is an analog of thymidine. Retention of FLT by the cells reflects DNA synthesis.
- ANG1005 (formerly called GRN1005) is a peptide-drug conjugate being developed for targeted treatment of brain metastases (Cremophor-free formulation).
- It consists of 3 molecules of paclitaxel covalently linked to Angiopep-2 designed to cross the blood brain barrier via LDL receptor related peptide (LRP) transport system.
- ANG1005 therapy was administered intravenously at 550 mg/m^2 every 21 days progressing of intra-cranial disease or unacceptable toxicity. All patients underwent FLT PET/CT imaging before and after 1 cycle of therapy with ANG1005. For (18F) FLT-PET/CT scan: Volumes of Interest were drawn in target brain metastases: SUVmax (80% Threshold : average value of the maximum 20% pixels), SUVmax, % of change pre-post therapy, % of change (using SUVmax), % of change (using T/Normal ratio). Patients underwent dynamic brain imaging over 30 min and then a static whole body PET scan at 1 hour post-injection. We calculated the % of change before and after therapy, considering significant response if the % of change was larger than 20%.